Tuning of Monte Carlo Event Generator PYTHIA 6 to Min Bias Data

(Preliminary Results)

Nameeqa Firdous, Gerald Rudolph
Institute of Astro and Particle Physics Innsbruck, Austria
Sun July 18, 2010

Min Bias is a cocktail of hard (pQCD) and soft processes

- Min Bias is a cocktail of hard (pQCD) and soft processes
- Soft interactions are the largest but most difficult part of the inelastic Xs at Colliders

- Min Bias is a cocktail of hard (pQCD) and soft processes
- Soft interactions are the largest but most difficult part of the inelastic Xs at Colliders
- Understand the whole event (not just the pQCD part)

- Min Bias is a cocktail of hard (pQCD) and soft processes
- Soft interactions are the largest but most difficult part of the inelastic Xs at Colliders
- Understand the whole event (not just the pQCD part)
- No MC generator can reproduce all MB observables at the same time

- Min Bias is a cocktail of hard (pQCD) and soft processes
- Soft interactions are the largest but most difficult part of the inelastic Xs at Colliders
- Understand the whole event (not just the pQCD part)
- No MC generator can reproduce all MB observables at the same time
- To describe data the best possible way MC models need to be tuned

PYTHIA Model

- Multiparton Interaction Model
- Pt ordered parton shower

PYTHIA Model

- Multiparton Interaction Model
- Pt ordered parton shower
- "In the full event generation process, probably no other area is as poorly understood as this one!" (PYTHIA manual)

• Several parton pairs can undergo (semi)hard interaction in an event

- Several parton pairs can undergo (semi)hard interaction in an event
- The hard scatter cross section is extended to the low pt(diverges for pt \rightarrow 0)

- Several parton pairs can undergo (semi)hard interaction in an event
- The hard scatter cross section is extended to the low pt(diverges for pt \rightarrow 0)
- A regularization parameter is introduced

- Several parton pairs can undergo (semi)hard interaction in an event
- The hard scatter cross section is extended to the low pt(diverges for pt \rightarrow 0)
- A regularization parameter is introduced
- All interactions are simulated in decreasing order of pt

Strategy

• Fragmentation Parameters were tuned to e+e-data(ALEPH)

Strategy

- Fragmentation Parameters were tuned to e+edata(ALEPH)
- Multiparton Interaction model parameters are tuned to pp/pp- data

Fit Procedure

• Linear parameterisation is used, most efficient with the possibility of iteration, allows many (10-20) parameters to vary simultaneously

Fit Procedure

- Linear parameterisation is used, most efficient with the possibility of iteration, allows many (10-20) parameters to vary simultaneously
- Central value and tuning interval for each parameter are chosen, and run the generator with these settings

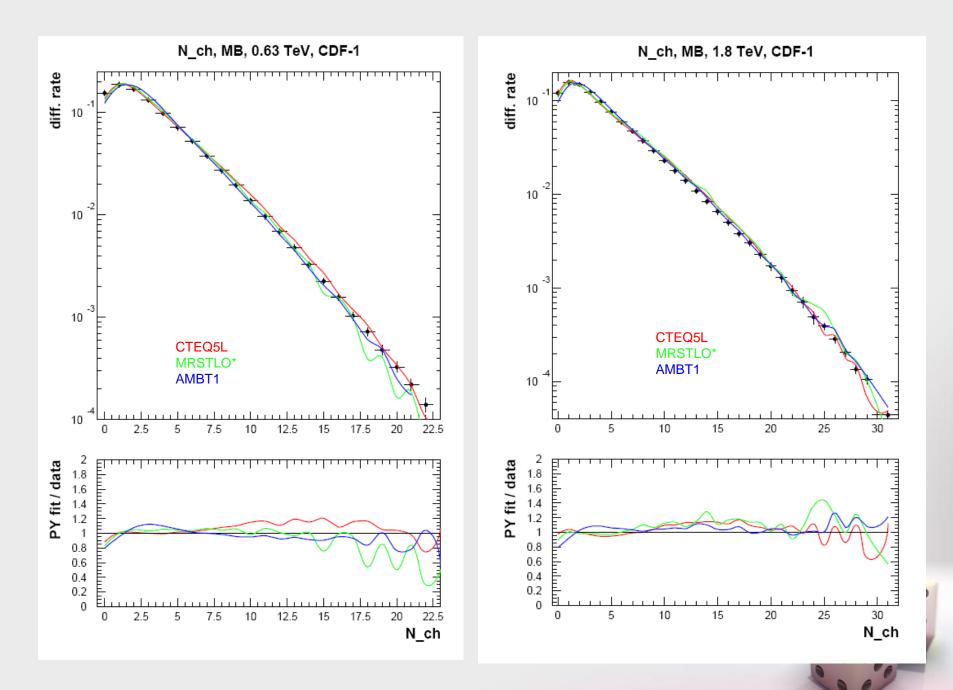
Fit Procedure

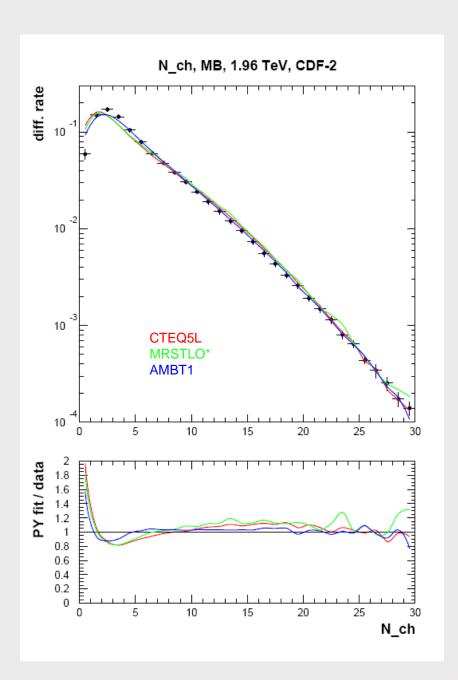
- Linear parameterisation is used, most efficient with the possibility of iteration, allows many (10-20) parameters to vary simultaneously
- Central value and tuning interval for each parameter are chosen, and run the generator with these settings
- This prediction is fitted to data (minimal χ 2)

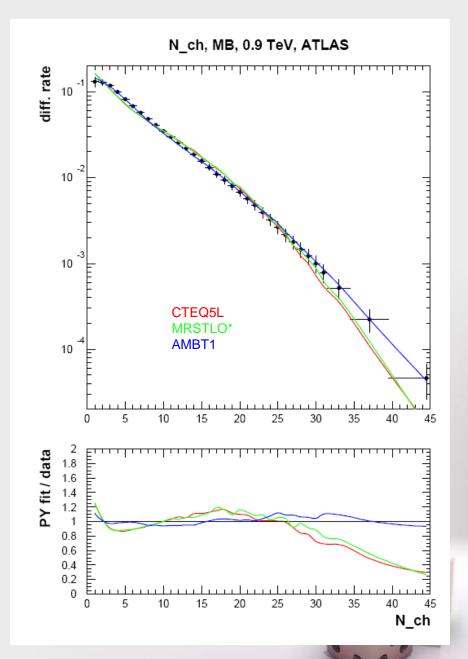
List of observables

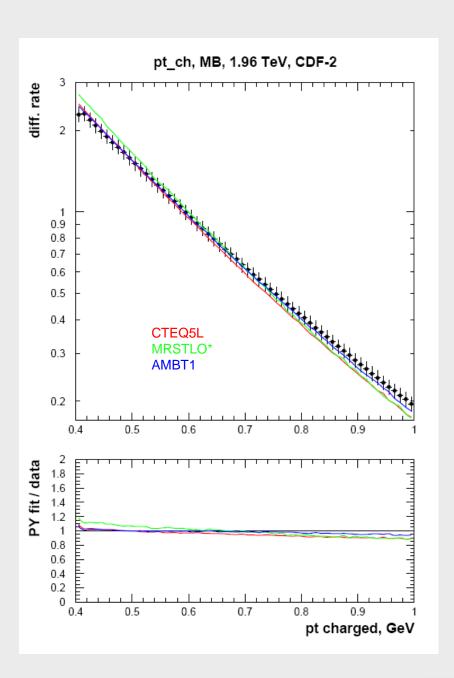
Analysis		Observable	Analysis		Observable
ATLAS 0.9TeV, p _t >0.5GeV	n _{ch} ≥ 1 η < 2.5	$\frac{1}{N_{ev}} \cdot \frac{dN_{ev}}{d\eta}$	CDF-II 1.96TeV p _t >0.4GeV	⁄, n _{ch} ≥ 1 η ≤ 1.0	$\frac{1}{N_{ev}} \cdot \frac{dN_{ev}}{dn_{ch}}$
ATLAS 0.9TeV, p _t >0.5GeV	n _{ch} ≥ 1 η < 2.5	$\frac{1}{N_{ev}} \cdot \frac{1}{2\pi p_t} \cdot \frac{d^2 N_{ch}}{d\eta dp_t}$	CDF-II 1.96TeV p _t >0.4GeV	⁄, n _{ch} ≥ 1 η ≤ 1.0	$\frac{1}{N_{ev}} \cdot \frac{1}{2\pi p_t} \cdot \frac{d^2 N_{ch}}{dy dp_t}$
ATLAS 0.9TeV, p _t >0.5GeV	n _{ch} ≥ 1 η < 2.5	$\frac{1}{N_{ev}} \cdot \frac{2\pi p_t}{dn_{ch}} \cdot \frac{dN_{ev}}{dn_{ch}}$	CDF-II 1.96TeV p _t >0.4GeV	⁄, n _{ch} ≥ 1 η ≤ 1.0	$N_{ev} 2\pi p_t ayap_t$ $\frac{1}{N_{ev}} \cdot \frac{1}{2\pi} \cdot \frac{d^2 N_{ch}}{d\eta dE_t}$
ATLAS 0.9TeV, p _t >0.5GeV	n _{ch} ≥ 1 η < 2.5	$\langle p_{\scriptscriptstyle t} \rangle vs.n_{\scriptscriptstyle ch}$	CDF-II 1.96TeV p _t >0.4GeV	⁄, n _{ch} ≥ 1 η ≤ 1.0	$\langle p_t \rangle vs.n_{ch}$
CMS 7TeV, no p _t	cut η < 2.4	$\frac{1}{N_{ev}} \cdot \frac{1}{2\pi p_t} \cdot \frac{d^2 N_{ch}}{d\eta dp_t}$	CDF-I 0.63TeV, p_t >0.4GeV	n _{ch} ≥ 1 η ≤ 1.0	$\frac{1}{N_{ev}} \cdot \frac{dN_{ev}}{dn_{ch}}$
ALICE 7 TeV, no	o p _t cut, _{ch} ≥1	$\frac{1}{N_{ev}} \cdot \frac{dN_{ev}}{dn_{ch}}$	CDF-I 1.8TeV, r p _t >0.4GeV	n _{ch} ≥ 1 η ≤ 1.0	$\frac{1}{N_{ev}} \cdot \frac{dN_{ev}}{dn_{ch}}$
ALICE 0.9 TeV,	no p _t cut,	n _{ch} ≥1			$\left. rac{dn_{ch}}{d\eta} \right _{\eta=0}$
ALICE 7 TeV,	no p _t cut,	n _{ch} ≥1			$\left.rac{dn_{ch}}{d\eta} ight _{\eta=0}$
ATLAS 0.9 TeV,	p _t >0.5GeV,	n _{ch} ≥6			$\left. rac{dn_{ch}}{d\eta} \right _{\eta=0}$
ATLAS 7TeV,	p _t >0.5GeV,	n _{ch} ≥6			$\left. rac{dn_{ch}}{d\eta} \right _{\eta=0}$
ATLAS 7TeV,	p _t >0.5GeV,	n _{ch} ≥1			$\left. rac{dn_{ch}}{d\eta} \right _{\eta=0}$

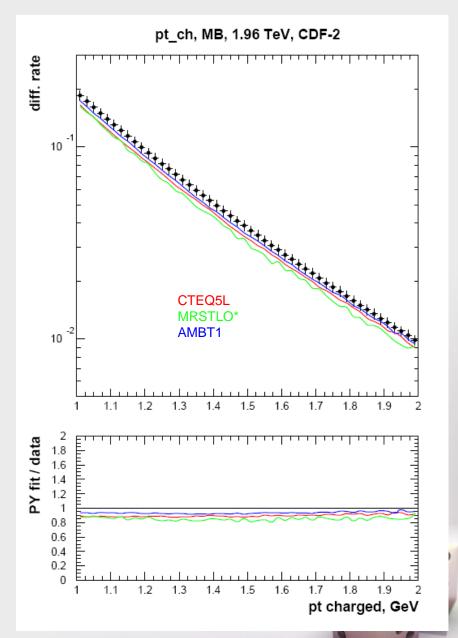
List of tuned parameters

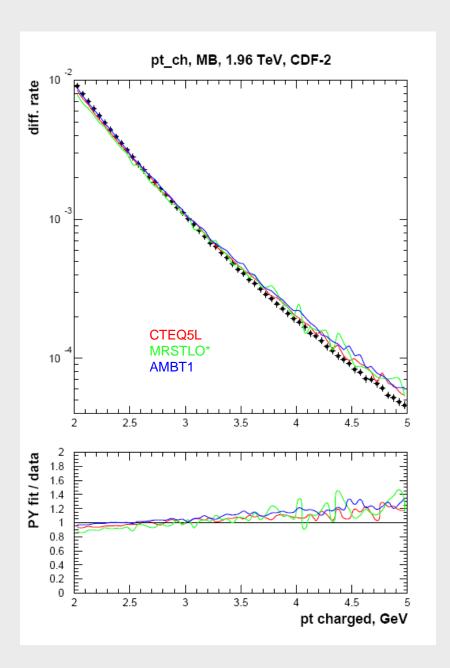

Parameters	Pythia Default	Tu CDF	ine CTEC LHC	Q5 Both	Tun CDF	e MRST LHC	LO* Both	Description
PARP(82)	2.00	1.78	1.69	1.76	2.01	1.92	1.99	P⊥0 at reference Ecm
PARP(83)	1.8	2.09	2.54	2.24	2.18	2.37	2.27	matter distribution
PARP(78)	0.03	0.49	0.52	0.51	0.39	0.47	0.41	colour reconnection in FS
PARP(90)	0.16	0.22	0.23	0.24	0.21	0.22	0.22	p⊥0 evolution with Ecm
PARP(77)	0	1.64	1.64	1.64	1.64	1.64	1.64	Suppression of CR for fast moving strings

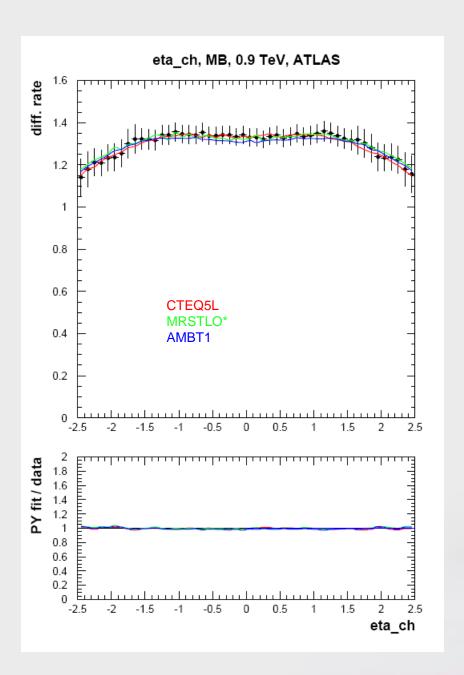

Tune CTEQ5			Tune MRSTLO*			AMBT1			
CDF LHC Both			CDF LHC Both			CDF LHC Both			
Chi ² /dof	7.16	2.00	5.23	14.10	3.42	11.38	7.01	1.58	6.01

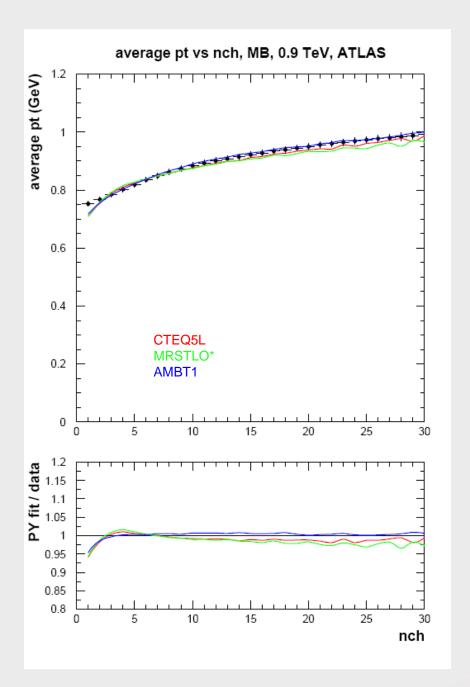

Central Charged Densities

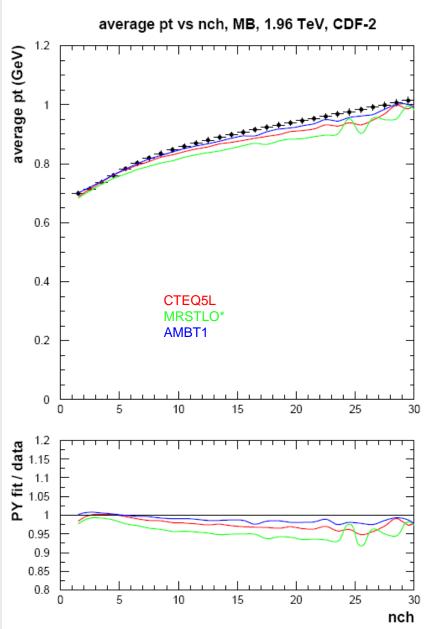

Analysi	S		Data	MC Overall fit		
ALICE	0.9 TeV,	no p _t cut,	n _{ch} ≥1	3.81 ± 0.07	3.56	3.60
ALICE	7 TeV,	no p _t cut,	n _{ch} ≥1	6.01 ± 0.15	5.18	4.81
ATLAS	0.9 TeV,	p _t >0.5GeV,	n _{ch} ≥6	2.38 ± 0.08	2.43	2.45
ATLAS	7TeV,	p _t >0.5GeV,	n _{ch} ≥6	3.64 ± 0.12	3.69	3.40
ATLAS	7TeV,	p _t >0.5GeV,	n _{ch} ≥1	2.42± 0.08	2.26	2.34

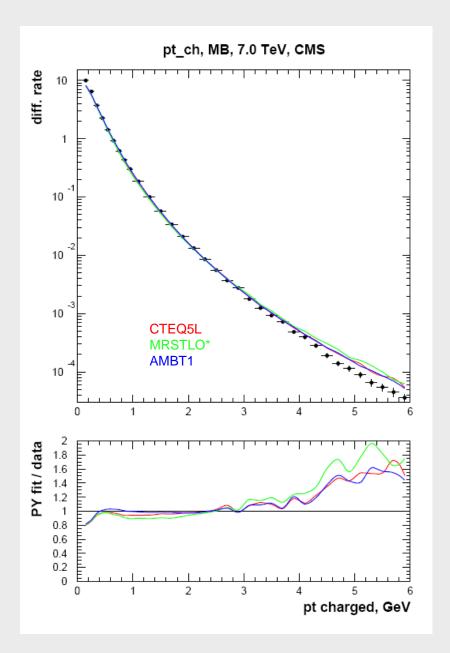


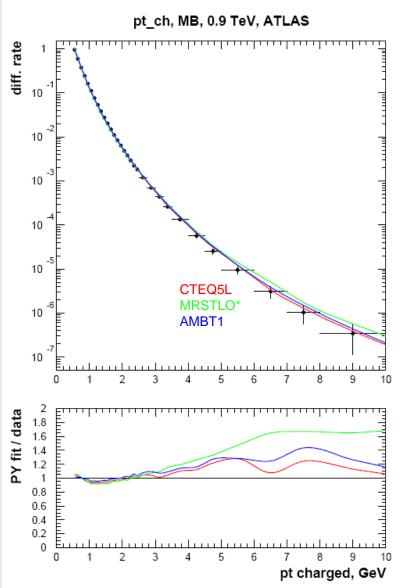












• A detailed understanding of MB interactions is especially important in very high luminosity environment (like LHC)

- A detailed understanding of MB interactions is especially important in very high luminosity environment (like LHC)
- Most important parameters of the PYTHIA MPI model are tuned

- A detailed understanding of MB interactions is especially important in very high luminosity environment (like LHC)
- Most important parameters of the PYTHIA MPI model are tuned
- Tuning results for LHC and CDF II data are inconsistent

- A detailed understanding of MB interactions is especially important in very high luminosity environment (like LHC)
- Most important parameters of the PYTHIA MPI model are tuned and compared to the AMBT1
- Tuning results for LHC and CDF II data are inconsistent
- Minimum Bias collisions are mixture of hard and soft processes, therefore, very difficult to simulate

